Wild-Type Mouse Models to Screen Antisense Oligonucleotides for Exon-Skipping Efficacy in Duchenne Muscular Dystrophy

نویسندگان

  • Limin Cao
  • Gang Han
  • Ben Gu
  • HaiFang Yin
چکیده

A readily available animal model is essential for rapidly identifying effective treatments for Duchenne muscular dystrophy (DMD), a devastating neuromuscular disorder caused by the lack of dystrophin protein, which results from frame-disrupting mutations in the DMD gene. Currently, the mdx mouse is the most commonly used model for antisense oligonucleotide (AO)-mediated exon skipping pre-clinical studies, with a mild phenotype. However, the accessibility of mdx mouse colonies particularly in developing countries can constrain research. Therefore in this study we explore the feasibility of using wild-type mice as models to establish exon-skipping efficiency of various DMD AO chemistries and their conjugates. Four different strains of wild-type mice and six different AO chemistries were investigated intramuscularly and the results indicated that the same exon-skipping efficiency was achieved for all tested AOs as that from mdx mice. Notably, levels of exon-skipping obtained in C57BL6 and C3H and mdx mice were most closely matched, followed by ICR and BALB/C mice. Systemic validation revealed that wild-type mice are less responsive to AO-mediated exon skipping than mdx mice. Our study provides evidence for the first time that wild-type mice can be appropriate models for assessing DMD AO exon-skipping efficiency with similar sensitivity to that of mdx mice and this finding can further accelerate the development of effective DMD AOs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Development of antisense-mediated exon skipping as a treatment for duchenne muscular dystrophy.

Duchenne muscular dystrophy (DMD) is a severe muscle-wasting disease caused by frame shifting and nonsense mutations in the dystrophin gene. Through skipping of an (additional) exon from the pre-mRNA, the reading frame can be restored. This can be achieved with antisense oligonucleotides (AONs), which induce exon skipping by binding to splice sites or splice enhancer sites. The resulting protei...

متن کامل

Long-term Exon Skipping Studies With 2′-O-Methyl Phosphorothioate Antisense Oligonucleotides in Dystrophic Mouse Models

Antisense-mediated exon skipping for Duchenne muscular dystrophy (DMD) is currently tested in phase 3 clinical trials. The aim of this approach is to modulate splicing by skipping a specific exon to reframe disrupted dystrophin transcripts, allowing the synthesis of a partly functional dystrophin protein. Studies in animal models allow detailed analysis of the pharmacokinetic and pharmacodynami...

متن کامل

Immortalized Muscle Cell Model to Test the Exon Skipping Efficacy for Duchenne Muscular Dystrophy

Duchenne muscular dystrophy (DMD) is a lethal genetic disorder that most commonly results from mutations disrupting the reading frame of the dystrophin (DMD) gene. Among the therapeutic approaches employed, exon skipping using antisense oligonucleotides (AOs) is one of the most promising strategies. This strategy aims to restore the reading frame, thus producing a truncated, yet functioning dys...

متن کامل

Evaluation of 2'-Deoxy-2'-fluoro Antisense Oligonucleotides for Exon Skipping in Duchenne Muscular Dystrophy

Duchenne muscular dystrophy (DMD) is a severe muscle wasting disorder typically caused by frame-shifting mutations in the DMD gene. Restoration of the reading frame would allow the production of a shorter but partly functional dystrophin protein as seen in Becker muscular dystrophy patients. This can be achieved with antisense oligonucleotides (AONs) that induce skipping of specific exons durin...

متن کامل

Evaluation of anhydrohexitol nucleic acid, cyclohexenyl nucleic acid and d-altritol nucleic acid-modified 2'-O-methyl RNA mixmer antisense oligonucleotides for exon skipping in vitro.

Antisense oligonucleotide (AO) mediated exon skipping has been widely explored as a therapeutic strategy for several diseases, in particular, for rare genetic disorders such as Duchenne muscular dystrophy (DMD). To date, the potential of anhydrohexitol nucleic acid (HNA), cyclohexenyl nucleic acid (CeNA) and altritol nucleic acid (ANA) has not been explored in exon skipping. For the first time,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014